Nitrophenol Chemi-Sensor and Active Solar Photocatalyst Based on Spinel Hetaerolite Nanoparticles

نویسندگان

  • Sher Bahadar Khan
  • Mohammed M. Rahman
  • Kalsoom Akhtar
  • Abdullah M. Asiri
  • Malik Abdul Rub
چکیده

In this contribution, a significant catalyst based on spinel ZnMn2O4 composite nanoparticles has been developed for electro-catalysis of nitrophenol and photo-catalysis of brilliant cresyl blue. ZnMn2O4 composite (hetaerolite) nanoparticles were prepared by easy low temperature hydrothermal procedure and structurally characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and UV-visible spectroscopy which illustrate that the prepared material is optical active and composed of well crystalline body-centered tetragonal nanoparticles with average size of ∼ 38 ± 10 nm. Hetaerolite nanoparticles were applied for the advancement of a nitrophenol sensor which exhibited high sensitivity (1.500 µAcm(-2) mM(-1)), stability, repeatability and lower limit of detection (20.0 µM) in short response time (10 sec). Moreover, hetaerolite nanoparticles executed high solar photo-catalytic degradation when applied to brilliant cresyl blue under visible light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants

A Co3O4/Fe2O3 composite nanofiber-based solar photocatalyst has been prepared, and its catalytic performance was evaluated by degrading acridine orange (AO) and brilliant cresyl blue (BCB) beneath solar light. The morphological and physiochemical structure of the synthesized solar photocatalyst was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-...

متن کامل

Photocatalytic properties of ZrO2 nanoparticles in removal of nitrophenol from aquatic solution

ZrO2 nanopowder was prepared by the sol-gel auto-combustion method. The product was characterized by X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDX) and scanning electron microscopy (SEM). The average crystalline size of ZrO2 was obtained 62 nm. Also, photocatalytic removal of nitrophenol from aqueous solution by using nanoscale ZrO2 under UV ...

متن کامل

Photocatalytic properties of ZrO2 nanoparticles in removal of nitrophenol from aquatic solution

ZrO2 nanopowder was prepared by the sol-gel auto-combustion method. The product was characterized by X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDX) and scanning electron microscopy (SEM). The average crystalline size of ZrO2 was obtained 62 nm. Also, photocatalytic removal of nitrophenol from aqueous solution by using nanoscale ZrO2 under UV ...

متن کامل

Graphene Oxide (GO)/α-Bi2O3 Versatile Multifunctional Composites for Enhanced Visible Light Photocatalysis, Chemical Catalysis and Solar Energy Conversion

The growing challenges of environmental purification by solar photocatalysis, precious metal free catalysis and photocurrent generation in photovoltaic cells are receiving the utmost global attention. Here we demonstrate the one-pot green chemical synthesis of a new stable heterostructured, eco-friendly, multifunctional micro-composite consisting of α-Bi2O3 micro-needles intercalated with ancho...

متن کامل

The Gadolinium (Gd3+) and Tin (Sn4+) Co-doped BiFeO3 Nanoparticles as New Solar Light Active Photocatalyst

The process of photocatalysis is appealing to huge interest motivated by the great promise of addressing current energy and environmental issues through converting solar light directly into chemical energy. However, an efficient solar energy harvesting for photocatalysis remains a critical challenge. Here, we reported a new full solar spectrum driven photocatalyst by co-doping of Gd3+ and Sn4+ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014